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Goldstone Complex == Madrid Complex EmE Canberra Complex & Network Control (JPL) ==

“NASA’s Deep Space Network (DSN) was established in
December 1963 to provide a communications infrastructure for
deep space missions”
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A Global Enterprise by Necessity




A Diverse Set of Missions
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Terminology: Track

e From a data science perspective, a track is associated with a collection of time series from
the beginning to end of DSN communication with the spacecraft that measure:
o Attributes and strength of the signal
o Attributes and telemetry associated with the spacecraft and DSN equipment
o Weather conditions at the site

Hur}lidity B Elevation Angle

Multivariate Time Series

A single track has many time series
associated with it, collectively
referred to as monitor data

There are hundreds of monitor data
items

System Noise Temperature

~—Air Temperature




Challenges

e DSN has pressure to reduce costs while maintaining quality of support to DSN mission users

e DSN complexes were once staffed 24/7 and each operator monitored a single track

e The Follow the Sun initiative (launched 2017) staffs a single complex during their daylight hours only to
monitor tracks at all three complexes simultaneously

Operators supporting up to 4 DSN has seen data rates increase More missions, especially
simultaneously tracks over time cubesats at lunar distances
and beyond
B N commuonatwinsesearaton oo
A
o MarcoA/ B

10,000

1,000

100 . .
o e e Ca e e 2010 2015 2020 2025 2030 2035 2040 Mars Reconnaissance Orbiter

Year



Matching ML Capabilities with DSN Challenges

e Supervised learning
O  Classification
O Regression

e Unsupervised learning
O  Clustering
O  Density Estimation
O  Anomaly Detection



Matching ML Capabilities with DSN Challenges

e Supervised learning
O  Classification -
O Regression
Database

(10+ years)

e Unsupervised learning V

O  Clustering o ) /
- ) . W . t . t
O  Density Estimation e have historical data

stored in a database at a
O  Anomaly Detection slightly coarser sampling
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Matching ML Capabilities with DSN Challenges

: : Discrepancy Reports can provide some
o
SuperV|sgd Igarnlng V labels for classification. The data also -
O  Classification contains actual measurements that can \
O Regression be compared to predicted ones. Thus,

regression is possible.

Database

(10+ years)
e Unsupervised learning V
O  Clustering
o D T We have historical data /
S =eiinmztet stored in a database at a
O  Anomaly Detection slightly coarser sampling

rate.



Developing Use Cases

e Team of mostly data scientists and

developers T+ Gompare ok oeross i monior deta flems for
2. |dentify anomalies within monitor data items given
e DSN operations engineer (who previous history
formerly worked as an operator)

assisting

e Developed four use cases based
on feasibility of ML solution

O  supported by initial prototyping 3. Classify whether a track is losing lock with the
spacecraft due to bad weather and radio
frequency interference (RFI)

. 4. Detect timing abnormalities in acquisition/loss of
® Surveyed DSN link control spacecraft s?gnal i

operators and operations engineers a

T



Survey Results

Based off of responses from 21 DSN staff from Madrid, Canberra, and California

Activity Comparisons

Anomaly Detection
B Predicting DRs

Profiling Early/Lateness

r

Summary

Please best match the below metrics with potential tools described above

Saves Most Time Reduces Complexity Reduces Frequency Most Useful




Classification based on Discrepancy Reports

e Top-ranked use case
e Most problematic due to issues with labeled data
e DSN to pursue a new tool that will improve label quality for ML

RFI incident reported but no
clear evidence seen in data
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Track comparisons input-output architecture diagram

Input a target track of Identify tracks of the N lize : Compute mean
~10 monitor data items gma same type (i.e., [ orrT][a 'ze t'mf'se”es distance, ratio, corr
spacecraft, antenna) monitor data items coeff of tracks

Compute average of
tracks of the same type
-> “normal” track

Input two target tracks
(current or previous
tracks)

B Normalize time-series
monitor data items

Machine learning model
to output similarity
score (0~1)

Output top 10 similar
tracks

Statistically compare target
track with “normal” track
(outlier detection)

Output within track
anomalies compared
with normal track




Track Comparisons - preliminary results (206

tracks: 52 similar & 154 dissimilar tracks)
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Roadmap to Integration

The below roadmap details a development plan based on survey results on utility of tools,
maturity of current tool development, and available resources.

Release 1: Release 2: Release 3: Release 4:
Track Comparisons Anomaly Detection DR lookup DR prediction

. Highlight
e s anomalous - Highlight DRs
tracks, : S nignigh’ - Predict DRs in
regions within in historical
current track

compare track, given tracks

quantitatively recent history

FY 2021 FY 2022



Conclusion

e DSN is preparing for major shifts in its operational paradigm
e Machine learning and automation will certainly play a role
e Build trust and value for users
o Survey needs
o Integrate with simpler products
e Data quality must be addressed as we shift to supervised models



